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Several applied problems are considered, in which it was possible to obtain a 

complete picture of the behavior of all bifurcation surfaces without resorting 
to the method of small parameter, also in the small neighborhood of a con- 
servative system. It was found that in all these problems the bifurcation sur- 
faces associated with the behavior of limit cycles and separatrices, and all 
their intersection lines (hence, also all possible structures) exist in an as 

small as desired neighborhood of conservative system sets, and that their mut- 
ual position is not related to the closeness to the conservative system. It seems 
that the realization of that particular situation makes it possible to estimate 

the behavior of systems that are not too close to conservative by the method 
of small parameter (a method that is essentially applicable to an uncontrol- 
led small neighborhood of the set of conservative systems). 

The possibility of using the qualitative results obtained by the method of 
small parameter for autonomous systems of second order differential equations for spe- 
cific parameter values, which in practice is often supported by experiments and is usu- 
ally considered to be only a plausible assertion [ 1,2 1, since the convergence of series 
used in it is not known. The idea that obtained results may have real meaning only if 
the considered series are convergent led to attempts at estimating their radius of con- 

vergence [ 3,4 1. The real advantage of the possibility of nonlocalized application of 
results obtained by the method of small parameter is, however, different and based 

on the premise that this method is a device which discloses some features that exist 

independently of the convergence of series. 

I.. Let us consider the system 

‘p’ = y _= P, y’ = p - sin cp-_y-22ayl(l + y2)=Q(l.I) 

which was investigated in [5,6] with nonnegative a, 0: and h 
We consider the band -n & cp < n in the cp y -plane with identified edges 

(the phase system is a cylinder) and assume,for?helimebeing, that a > 0 and fi > 0. 

1. 1. The equilibrium state. The saddle parameter. 

The equilibrium state is on the axis y = O;a saddle exists when Cp = n - arcsin fi 
and a focus (node) when up = arcsin (3 (when h = a = 0) , there is a center). 
The focus is stable when h > -2a and unstable when h < -2a. If h = -2U 
the focus is complex and the first Liapunov parameter is a, = 3/,na (1 - flz)+‘e > 0. 
Only an unstable limit cycle can contract to the focus or be generated by it. 

The saddle parameter ((A s I’,’ + Q!,’ calculated at the saddlepoint ) is 
A = - (h + 2a). This implies that the separatrix loop, if it exists, and a simple 

focus have the same stability and must be separated by a cycle of opposite stability. 
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1. 2. Region in which there are no periodic 
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801 utionc. 

By the Bendikson - Dulac criterion there are no cycles and no separatrix loops con - 
taming equilibrium slates when h < -21x and, also, there are no double cycles that 

envelop the phase cylinder, since the expression 

P,’ + Qv’ = --h - 2a (1 - y”) / (1 + y’)2 

does not change its sign. 
2’. System (1.1) is equivalent to the equation 

ydy + sin cpdcp = fi - Ay - 2ay i (1 .f ys) 

Hence for the closed contour enveloping the cylinder and composed of trajectories of 
system (1.1) the following conditions must be satisfied: 

If, however, p = 0 and ?L < -2a, the integrand is of constant sign and there are 
no closed loops enveloping the cylinder. 

Fig . 1. 
l. 3. Structures with fi = 0. System (1. 1) is invariant with respect 

to substitutions --cp for cp and -y for y . The phase space is symmetric about the 

coordinate origin, and when h = a = 0 the system is conservative (Fig. 1, a ) . 
When a increases the field of directions turns clockwise. Closed curves of a con - 

servative system are without contact. There are no cycles: the a-separatrices run 

into a stable focus, while the o-separatrices arrive from infinity (Fig. 1, b ) . The 

same structure remains also for all a > 0 since with increase of A the field turns 

again clockwise. When h decreases from zero (when a # 0) an unstable limit 
cycle (the term -hy which determines the sign of d.r/ / dq for considerable y Fig. 
1, c ) arrives from infinity. 
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When h & -2U the focus is unstable and there are no cycles (see Sect, 1.2) : the 
W- separatrices unroll from the focus w!rile the a- separatrices tend to infinity (Fig. 

1, j). Since the opposite takes place when h = 0 namely, the a-separatrices con- 
verge to the focus and the w-separatrices arrive from infinity, hence when a changes 
from 0 to 2a separatrix loops must occur. Owing to symmetry, the loops around 
the upper and lower half-cylinders occur simultaneously, They can, also, be consid- 
ered as a single contour enveloping the equilibrium state. 

The CyCleS that arrive from infinity cannot be trapped by separatrtx loops, 
since that is inhibited by the sign of the saddle parameter (only a stable cycle can be_ 
come a separatrix loop). 

The contour consisting of saddles and separatrices which envelops the focus, 
and the focus itself, are stable, hence they must be separated by an unstable limit 

cycle (see Sect, 1.1). This implies that, when h decreases from zero in the interval 

-2a ( h ( 0, a double limit cycle appears around the e~ilibrium state formed 

by the contraction of trajectories. That cycle, owing to the monotonous rotation of 

the field, separates into two : a stable external and an unstable internal cycle ( Fig . 

I, e) , Then the stable cycle is transformed in a contour consisting of separatrices and 

saddles { Fig. 1, f). At the disintegration of the contour stable cycles are generated 

at the upper and lower half-cylinders. Two cycles thus become present on every half- 

cylinder ( Fig. 1, g), With further decrease of h the cycles on each half-cylinder 

monotonically converge, then merge ( Fig. 1, h)‘and vanish ( Fig. 1, I), when 
h = -2a the unstable cycle contracts to the focus, yielding the structure ( Fig.1, j 

without limit cycles. The described bifurcations occur for any 01 > 0 only in the 
outlined sequence with decreasing &hence in the parameter plane a& there exist 

bifurcation curves lying between the straight lines h = 0 and & = -2cz which in- 
tersect only at the coordinate. origin. 

1, 4, stiueturer with p + 0. Let us fix M. and consider the plane 

,3& Along the straight line p = 0 for a symmetric phase space bifurcation takes 
place when & decreases; when h = 0 an unstable limit cycle arrives from infinity, 
when h = 3L1 ( 0 we have a double limit cycle around the focus formed by traj - 

ectory bunching, when h = a, < h, we have a contour formed by separatrices, and 
when h = A3 < h, a double limit cycle formed by the merging of cycles, while for 

h = -2a < hs the limit cycle contracts to the focus. 
When p > 0 the phase space symmetry is disturbed and, consequently, the 

bifurcation curves which correspond to separatrix loops around the lower (curve 8;) and 
the upper (curve; Sz )half-cyl~de~ and, also around the focus (curve s3 ) do not 
coincide in the S&-plane. They all begin at point (0, ha) and end on the straight 
line P = 1 (when fl > 1 there is no equilibrium state), Curve Sa has a positive 
slope, since only when parameters 6 and h increase or decrease simultaneously, the 
nonm~otonous rotation of the field which does not destroy the loop is m&rtained on 
the upper half-cylinder. For the same reason curve 8, has a negative slope. Curve 

Ss which lies between S1 and S, and cannot intersect these when p # 0, It ends 

at point h = --2a of the straight line fi = 1 , which corresponds to a degenerate 
saddle-node without nodal region (the degenerate saddle-node is to be considered as 
the degeneration of the saddle separatrix which forms a loop when the latter contracts 

to a point). 
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The bifurcation curve which corresponds to the double cycle around the focus 
(curve D ) begins at point (0, iI) and ends at point (1, -.2a), where 

Fig. 2 Fig. 3 

the saddle parameter vanishes. Curves D and Sa cannot intersect at any other points. 

The bifurcation curves which correspond to double cycles around the lower 
(curve C, ) and the upper (curve C, ) half-cylinders begin at point (0, &). Curve 

cr lies below curve S, and has a negative slope: it ends at the point of intersection 
of the straight line 3L=.-2a on which the saddle parameter A vanishes, and curve 
S,. Curve C, cannot intersect S, in the region where A < 0, since then a stable 

loop would be formed, which is impossible owing to the presence of the double cycle 
on the lower half-cylinder, which is stable from above, moreover it cannot leave re- 
gion A < 0, since no_dcuble cycles are possible when A > 0 (see Section 1.2 ) . 
Curve Cs lies below S, and has also a positive slope. It cannot intersect Ss, since 
that is inhibited by the sign of the saddle parameter (the double cycle on the upper 

half-cylinder which corresponds to points of curve C, is stable from below). Curve C, 
intersects the b -axis at point /3 = PO < a and passes to region h > 0, where it 

is bounded from above by the straight line ?L = a i 4 (see Appendix 1) . 
When a .> 0 curve r?s runs from point (0, 0) into regionfi > 0, h > 0: 

it corresponds to the double limit cycle on the upper half-cylinder which is stable from 

above. That cycle originates at infinity when fi = L = !: (see Appendix 2 1. 
Curve c, is bounded from above, as curve C,,by the siraight linea =a i 4. 

Both have a positive slope and with increasing p merge at the angle point which cor- 
responds to a triple limit cycle. Curves C, and C, must merge since both are boun- 
ded from above and from the right ( Appendix 3 ) . 

The disposition of bifurcation curves in the fib -plane is shown in Fig. 2 
(not to scale) for fixed a., When a - 

'G) 
0 the heavy z-shaped line (curves Cr , C,, 

contracts to a point. This is accompied by the contraction to point (0, 0) of 
ali other intersection points of bifurcation curves, except the points which iie on the 
straight line p = 1. When a = 0 curves S, and S,,run from point (0, 0) to 
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points (I, & 1.19) [?I, andcurve S, contracts to the segment a = 0,O 4 p < 1, 
which corresponds to the loop of the conservative system. The partitioning of space 
fihol for positive a and /3 is shown in Fig. 3. The previously specified constraint 

on the signs of a and fi can now be removed. The bifurcation surfaces can be sym- 
metrically extended with respect to the plane fi = 0 and to axis /3. The bifur - 

cations corresponding to points symmetric about the plane p = 0 appear in the phase 
space with changed directions of axes U, and y, while those corresponding to points 
symmetric about the fi axis appear with changed direction of the Y -axis and reversed 
direction of motion along trajectories. 

1.5. A notewo~hy point of the parameter space is that which corresponds to 
the noncoarse conservative system (the coordinate original), It is the intersection of 

all bifurcation surfaces and of all lines of their intersections. The analysis of a small 
neighborhood of that point (by the method of small parameter) provides a compre - 
hensive qualitative picture of the structure and bifurcations with which equilibrium 
states do not vanish. 

Note, All of the above peculiarities of bifurcation surface disposition are 
obtained also with the more general equation 

‘p” 3 AVp’ i-I;(cp)=p--of(cp-) 

where function F (9) is continuous, periodic with two extrema in a period, and sym - 
metric about its zeros, while function f (9’) is continuer, satisfies conditions 

y,‘f (cp’) > o when ‘p’ # 0, f (cp’) = -f (-rp’), f’ (0) > 0, f”’ (0) < 0% f (CQ) = 0 
and is analytic in the neighborhood of P’ = 0 and o = 1 j CP‘ = 3. The proof is 
almost verbatim repetition. 

2. Let us consider the system 

5’ = y f P, y’ = [ql (5) - h] Y +cpW-o +ay(y f(2.1) 
1) zs Q 

which on certain assumptions defines the stationary motion of domains in bipolar semi- 

conductors [ 8- 111. In these equations CJI (;z)is a function with a falling section bet- 

ween ascending branches, and 3L > 0, a > 0, a’s 0. 

2. 1, The equilibrium rtate_r. Theseare defined by the conditions 
y = O,fp (2) .Z G.. .T&o or three e~i~brium stat? are possible. In the parameter 

plane & (& & &nst) we have a band ‘&‘< (3 < CM (‘a,. and CTM are the 

minimum and maximum.values of ,u, (x) ) in which the system has three equilibrium 
stated (two saddles and a focus or node between them) and where all bifurcations 

take place. 
The focus is stable when k > o -I- a and unstable when h < o + a. 

When k = CT + a the focus is complex and the first Liapunov parameter is 
a8 == --*id a@12 ( 0, /3 =: -.-cp’ (x2) ‘; 0, where 2% is the coordinate of the 

complex focus. Hence only a stable limit cycle can contract to, or emanate from 

the focus. 
Since the saddle parameter Lt\ =Z o - k + a and the real part of roots 

of the characteri&ic equation for the focus are of the same sign, hence the separatrix 
loops. if they are formed. and the simple focus are simultaneously either stable or 
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unstable. and must, therefore, be separated by a limit cycle. 
2. 2. The structures of solutions witha = 0. Whena = 0 and 

o = A, system (2.1) is conservative and integrable. In the same phase plane there 
are two saddles with a center between them. When o + h system (2.1) has no clo- 

sed trajectories, since variation of h results in a monotonic rotation of the direction 

field of system (2.1) , and the closed.curves of the center are cycles with no contact. 

2. 3. The crtructurea of solutions with a # 0. All of thecon- 
sidered bifurcations occur in the band x1 < J: < x3, where x1 and 23 are coord- 

inates of the saddle. Because of this, we shall consider only those a- and o-lsepara- 

trices which enter that band. 

1”. Let h > o. The equilibrium state is defined by two saddles with a stable 
node between them. Since the a- and o- separatrices shift in opposite directions 
when h increases, hence the closed trajectories, if they exist, are bounded with res- 

pect to y., By applying the Bendikson- Dulac criterion we obtain 

FizPX’ +Q!,‘=cP(z)--_ fa(2y +l) 

When h is fairly large, the sign of F, remains unchanged in the region en- 

veloped by separatrices, where limit cycles could be found, hence there are no cycles 
in it, the a- separatrlces converge to the node and the o-.separatrices come from in- 

finity ( Fig. 5, g ) . 
2”. When h = o the transition from a = tJ to a # 0 results in a turn 

of the field of system (2.1) at which the closed curves of the center become loops 
without contact. Structures with a = 0 are shown in Figs. 4, a -4, c, and in Figs. 
4, d - 4, f structures witha > 0 are plotted. When passing from the structure in Fig. 

4, d to that of Fig. 4, e, a separatrix running from saddle to saddle must necessarily 

appear in region Y ( 0 (Fig. 4, g) , and at transition from structure 4, e to structure 
4, f this takes place in region y > 0 (Fig. 4, h) . We denote the values of paramet- 

ers at which these bifurcations occur by oi (a) and crs (a), respectively. 

3”. When o = conat and a = conat , the monotonic rotation of the 
direction field of (2.1) makes it possible to trace all bifurcations produced by the var- 

iation of h When h = o < o, the o- separatrix of the right-hand saddle unrolls 
from.the unstable focus and the a-separatrix of the left-hand saddle tends to infinity 

(Fig. 4, d). When k > o ,, the a-separatrix of the right-hand saddle comes from 
infinity and the a_ separatrix of the left-hand saddle moves into the stable node 

(Fig. 5, g ) . Comparison of the behavior of separatrices shows that when 3, increases 
from h = o to h > CT bifurcation of separatrices takes place: first, a loop of the 

right-hand saddle separatrix is formed, and this is followed by the formation of a sep- 
aratrix running from the saddle to another saddle in region y > 0. 

Because of the condition a, < 0 when h increases and passes through 
A = o + a a stable cycle contracts to the focus. Since system (2. 1) has no limit 

cycles when h = o and in the interval of h variation from o toxT + aonly an 
unstable loop can be formed (the saddle parameter is positive), hence for a certain X 
in that interval a semistable cycle is produced by the bunching of trajectories. That 
cycle is stable from within ( Fig. 5, a) which owing to the field monotonic rotation, 

separates into two : 
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an unstable external and a stable internal cycles ( Fig. 5, b) . With increasing h:the 
cycles diverge and a separatrix loop is formed, into which during its formation is ab- 
sorbed an unstable cycle ( Fig. 5, c ) . 

--- 
Fig, 4 

Fig. 5 

After disintegration of the loop a structure with one stable limit cycle which envelops 
the focus, is created ( Fig. 5, d) . When h = (5 + a the stable cycle contracts to 
the focus and for h > 0 -/- a we have a stnkture without limit cycles ( Fig. 5, e). 
Further increase of 3” leads to the formation of a separatrix which runsfrom thesaddle 
to another saddle ( Fig. 5, f) at whose disintegration we have a structure that is topo- 

logically equivalent to the structure with 3, >> IS ( Fig. 5, g) . When h decreases 

from h = u , the only bifurcation is represented by the separatrix running from the 
saddle to another saddle in region y < 0. Bifurcations can only occur in the indicated 
order, since the saddle parameter changes its sign together with change of the focus 
stability. 

4”. The sequence of bifurcations (bi~~ation curves) in the band 0s < o 
4 GM is established in the same way, except! that the loop is formed by the separa- 
trix of the left-hand saddle, and that with increasing J, the separatrix running from 
the saddle to another saddle is generated in region Y < 0, and when h decreases 
this occurs in region 9 > 0. 

fn the band ol< u < os the bifurcations are similar (although some con- 
vert in a different order ), and the bifurcation curves of adjacent bands convert from 
one to another. Bifurcation curves of the left-hand and right-hand saddles join at the 
intersection point of curves that correspond to separatrices running from saddle to 

saddle, because the separatrix contour with two saddles may be considered as a degen- 

erate right-and left-hand saddles. 
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A s~n~la~~~in~ of the kind of saddle-node appears 
Fig 7 

in tht’phase space on the 
straight lines o = cm and c = chf which bound the considered band in the para- 
meter space. That point degenerates and the nodal region vanishes when a second 
zero root appears in the solution of the characteristic equation. This occurs at inter- 
sections with the straight line h = o + a.. The bifurcation curves of separatrix 
loops and of double cycles also terminate at these points. 

2. 4. Subdivision of the parameter space. Subdivision of 
space o&z, is shown in Fig. 6. All possible bifurcation surfaces and their intersection 
lines, including those corresponding to separatrices running from saddle to saddle, pass 

through point A which corresponds to the conservative system in the set of conserv- 
ative systems CC = L) and h = o (the possibility of obtaining all bifurcations 
with Limit cycles implies the necessity to have bifurcations of separatrices also in in- 
termediate structures in the same neighborhood). The structures in the neighborho~ 
of point h comprise all qualitative structures and bifurcations of system (2.1) for 
parameter values for which equilibrium states do not vanish, 

3. Let us consider the system 

5’ = y, y = o - lx _I Y (4 - EYD + rp’ @;I (3.1) 

wherecp (z) has a dropping section when it is approximated by the cubic polynomial 
cp (z) = CZX~ - bx2 + cx. 

The system considered on [12] reduces to the form (3.1) when ~1 = 1 . For 
any p > 0 the equilibrium states, their number, properties and relative position, the 
equation of the discriminant.curve that separates the region of three equilibrium 

states from that of single equilibrium, and equations of bifurcation curves for the focus 
are independent of, p. The Liapunov parameters for systems (3.1) differ from those 
in [12] by factor p. All conclusions about the qualitative structures and of the sub- 
division of parameter space remain unchanged. 

Whenp = Osystem (3.1) is conservative and can have either a single equi- 
librium state, the center, or three, viz. two centers with a saddle between these 
(for the discriminant curve this is the center and a complex equilibrium state). Using 
the method of small parameter proposed by Pontriagin [13], it is possible to determine 
in the planep = 0 the disposition of curves which are limiting the bifurcation surfaces 
when ,u -+ 0 Bifurcation curves in the parameter space hap, their section by the 
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plane p = con&, and the limit curves are shown in Fig. 7 (bifurcation surfaces re- 
lated to the complex focus are omitted for simplicity). 

The small neighborhood of the conservative system plane comprises all qual- 
itative structures and all bifurcations of system (3.1) . 

Appendix 1. Existence of the intersection point of curve C, with the 
8 -axis and its estimate (PO < a) follows from the comparison of system (1.1) with 
X = 0 with the system 

q‘ = T,, f/’ == fi - cc - sin cp 

When fi > ojthe trajectory of system A, 1) which reach the upper half-cylinder are _ 
spirals which tend to infinity (except the o-separatrix of the saddle, if the latter ex- 
ists) v and the direction field of (1.1) is turned relative to ( A. 1) anticlockwise. 
Because of this system (1.1) has no limit cycles when h= 0 and p > a which would, 
however, exist if curve cz intersected the 3 fai -axis to the right of the considered value 
p > a.01 tended to infinity with its asymptotic lying below the p -axis. 

The boundedness from above is the consequence of the absence of real bran- 

chesofcurve P,‘+Q,‘=Owhen ~>a/4 . 

Appendix 2. Setting _Y = 1 ! P and deriving in the usual way thesequence 
function in the neighborhood of small p = PO, we obtain 

0, (2n) - po (0) = poz (2nX + (43x%2 - 2nfQpo + [8nW - iodq3 + 
4n (h + a) - 6xh]poz -{- . . .} 

When /3 , y and p = 1 / yare small, equation pi (231) - p. (0) = 0 has a dou- 
ble root PO = @ f 4a -I- . . ., which corresponds to the limit cycle on the upper half- 
cylinder,if A= fi’i8a + . . . . The last expression is the asymptotic representation 
of curve C, in the neighborhood of point B = 12 = 6. 

A p p e n d i x 3. The boundedness of curve Cs on the right (with respect to 
[j ) is implied by that when h > 0 it borders on the left on the region of existence 

of three cycles, while for fairly large (and fixed a) there can be no more than a single 
cycle, The last follows from the Dulac criterion, Along the straight lines !i = !fl. 

where !ij. is the root of equation 
i, ?a (I -- ( g py -.. j, 

I’,’ Q/’ vanishes and, consequently, J-!/j is a bounded quantity. Owing to the 
boundedness of hllj we have from (1.1) that for large p P,’ -. Q!,’ is a curve without 

contact. 
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